Hypereuclidean Manifolds and the Novikov Conjecture

نویسندگان

  • A. N. Dranishnikov
  • A. N. DRANISHNIKOV
چکیده

We develop some basic Lipschitz homotopy technique and apply it to manifolds with finite asymptotic dimension. In particular we show that the Higson compactification of a uniformly contractible manifold is mod p acyclic in the finite dimensional case. Then we give an alternative proof of the Higher Signature Novikov Conjecture for the groups with finite asymptotic dimension. Finally we define an asymptotically piecewise Euclidean metric space as a space which admits an approximation by Euclidean asymptotic polyhedra. We show that the Gromov-Lawson conjecture holds for the asymptotically piecewise Euclidean groups. Also we prove that expanders are not asymptotically piecewise Euclidean

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypereuclidean Manifolds and Expanders

We show that the Cayley graph of the fundamental group of a closed aspherical manifold with the hypereuclidean universal cover cannot contain an expander. This rules out for recent Gromov’s examples of exotic groups an approach to the Novikov Conjecture via the hypereuclideanness developed by Connes, Gromov and Moscovici [G],[CGM] and in a different languages by Ferry and Weinberger [FW],[DF], ...

متن کامل

Manifold Aspects of the Novikov Conjecture Novikov Conjecture. Let H : M 0 ! M Be an Orientation-preserving Homo- Topy Equivalence between Closed, Oriented Manifolds. 1 for Any Discrete Group

be the Hirzebruch L-class of an oriented manifold M. Let B (or K(; 1)) denote any aspherical space with fundamental group. (A space is aspherical if it has a contractible universal cover.) In 1970 Novikov made the following conjecture. Many surveys have been written on the Novikov Conjecture. The goal here is to give an old-fashioned point of view, and emphasize connections with characteristic ...

متن کامل

Manifold Aspects of the Novikov Conjecture 1975

be the Hirzebruch L-class of an oriented manifold M. Let B (or K(; 1)) denote any aspherical space with fundamental group. (A space is aspherical if it has a contractible universal cover.) In 1970 Novikov made the following conjecture. Many surveys have been written on the Novikov Conjecture. The goal here is to give an old-fashioned point of view, and emphasize connections with characteristic ...

متن کامل

Manifold aspects of the Novikov Conjecture

Many surveys have been written on the Novikov Conjecture. The goal here is to give an old-fashioned point of view, and emphasize connections with characteristic classes and the topology of manifolds. For more on the topology of manifolds and the Novikov Conjecture see [58], [47], [17]. This article ignores completely connections with C§-algebras (see the articles of Mishchenko, Kasparov, and Ro...

متن کامل

L 2 - Topological Invariants of 3 - manifolds by John Lott and Wolfgang Lück

We give results on the L2-Betti numbers and Novikov-Shubin invariants of compact manifolds, especially 3-manifolds. We first study the Betti numbers and Novikov-Shubin invariants of a chain complex of Hilbert modules over a finite von Neumann algebra. We establish inequalities among the Novikov-Shubin invariants of the terms in a short exact sequence of chain complexes. Our algebraic results, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008